機械要素の基礎:ボールねじ

機械要素

ボールねじは、ねじ軸とナットの間に鋼球を介在させ、その転がり運動を利用して回転運動を直線運動へ、あるいは直線運動を回転運動へと変換する機械要素部品です。

工作機械や射出成形機、半導体製造装置、そして産業用ロボットといった現代の精密機械において、位置決め機構の心臓部として不可欠な役割を担っています。従来のすべりねじと比較して圧倒的に摩擦抵抗が小さく、高い伝達効率と位置決め精度を実現できることから、機械設計の分野では直線運動案内の決定版として扱われています。


転がり摩擦による高効率化のメカニズム

ボールねじの最大の特徴は、ねじ軸とナットが直接接触せず、その間にある多数のボールが転がりながら荷重を支える点にあります。これは、軸受における滑り軸受と転がり軸受の関係に相当します。

すべりねじとの比較

台形ねじに代表される従来のすべりねじは、おねじとめねじの面が直接接触し、滑りながら回転します。このとき、接触面にはクーロン摩擦が作用し、その摩擦係数は潤滑状態にもよりますが0.1から0.2程度となります。そのため、入力された回転エネルギーの多くが摩擦熱として失われ、運動変換効率は30パーセントから40パーセント程度にとどまります。また、スティックスリップ現象が発生しやすく、微小な送り制御が困難であるという課題がありました。

対してボールねじは、ボールの転がり運動を利用するため、摩擦係数は0.003から0.01程度と極めて小さくなります。これにより、90パーセント以上という高い機械効率を達成しています。この高効率性は、小さなモーターでの駆動を可能にし、省エネルギー化に貢献すると同時に、発熱を抑制して熱変位による精度低下を防ぐという重要な利点をもたらします。

可逆性

ボールねじの高い効率は、運動の可逆性という特性も生み出します。ねじ軸を回転させてナットを動かす正作動だけでなく、ナットに軸方向の力を加えてねじ軸を回転させる逆作動も同様に高効率で行うことが可能です。この特性を利用して、自動車のステアリング機構や、振動エネルギーを電力に変換するエネルギー回生ダンパーなどへの応用が進んでいます。一方で、垂直軸に使用した場合は、自重によって自然に落下してしまうため、ブレーキ機構の併設が必須となります。


ボール循環の幾何学とメカニズム

ボールねじが連続的に作動するためには、ねじ溝に沿って転がるボールがナットの端から脱落することなく、再び元の位置に戻って循環し続ける必要があります。このボール循環システムの設計こそが、ボールねじメーカー各社の技術力が問われる核心部分です。

循環方式の分類

主要な循環方式には、リターンチューブ式、こま式、エンドキャップ式があります。

リターンチューブ式は、ナットの外部にパイプ状のチューブを取り付け、ボールをねじ溝からすくい上げてチューブを通し、数リード離れた位置に戻す方式です。構造が堅牢で大量生産に向いており、幅広い用途で採用されています。

こま式は、デフレクター式とも呼ばれ、ナット内部に「こま」と呼ばれる部品を埋め込み、ボールをねじ山の背を乗り越えさせて隣の溝へ戻す方式です。ナットの外径を小さくできるため、スペースに制約がある場合に有利ですが、一リードごとに循環させるため、多数の回路を設ける必要があります。

エンドキャップ式は、ナットの両端にキャップを設け、その内部に設けたトンネルを通してボールを戻す方式です。ボールが滑らかに循環するため、高速回転時の音や振動が少なく、多条ねじや大リードの高速搬送用ボールねじに適しています。

ゴシックアーチ形状

ねじ溝の断面形状も極めて重要です。単純な円弧形状ではなく、二つの円弧を組み合わせたゴシックアーチ形状が一般的に採用されています。これにより、ボールとねじ溝の接触角を適切に設定することができ、軸方向荷重に対する剛性を高めると同時に、ボールと溝のすきまを極限まで小さく管理することが可能となります。また、接触点が明確になるため、予圧を与えた際の挙動が安定するという利点があります。


位置決め精度と予圧理論

工作機械などの送り機構において、バックラッシュ、すなわち機械的なガタは致命的な欠陥となります。ボールねじは、予圧という技術を用いることで、このバックラッシュを理論的にゼロにし、高い剛性を実現しています。

バックラッシュと弾性変形

ボールとねじ溝の間には、円滑な作動のためにわずかな隙間が必要です。これをアキシアルすきまと言います。しかし、この隙間が存在すると、回転方向が反転した瞬間に送りが遅れるロストモーションが発生します。また、切削抵抗などの外部負荷がかかった際、ボールと溝の接触部が弾性変形することで、指令した位置からずれてしまう変位が生じます。

予圧による剛性向上

予圧とは、あらかじめボールに内部荷重をかけておく操作です。これにより、アキシアルすきまをなくし、常にボールと溝が接触した状態を作り出します。 さらに重要なのは、ヘルツ接触理論に基づく剛性の向上です。ボールと溝の接触部は、荷重が増加するにつれて接触面積が広がる非線形ばねのような特性を持っています。あらかじめ予圧によって荷重をかけておくことで、このばね定数が高い領域を使用することができ、外部負荷に対する変位量を大幅に抑えることができます。

予圧方式の種類

代表的な予圧方式には、ダブルナット方式、オフセットリード方式、オーバーサイズボール方式があります。

ダブルナット方式は、2個のナットの間に座金(スペーサー)を挟み込み、互いに引っ張り合う、あるいは押し合う方向に力を発生させる方式です。最も高い剛性が得られ、予圧量の調整も確実であるため、高精度な工作機械に多用されます。

オフセットリード方式は、1個のナットの中央部でねじのピッチ、すなわちリードをわずかにずらすことで、ナット内部でボールに予圧を与える方式です。ナットが1個で済むためコンパクトですが、予圧量の微調整は困難です。

オーバーサイズボール方式は、ねじ溝の空間よりもわずかに直径の大きいボールを組み込むことで予圧をかける方式です。最も安価で簡易的ですが、4点接触となるため、摩擦トルクが大きくなりやすい傾向があります。


寿命予測と許容回転数

ボールねじは永久に使用できるものではなく、金属疲労による寿命や、回転速度の限界が存在します。これらを正しく計算し選定することが、機械設計における最重要項目の一つです。

定格疲労寿命

ボールねじが回転と荷重を繰り返すと、ボールやねじ溝の表面に繰り返しせん断応力が作用します。これが限界に達すると、表面の一部が魚の鱗のように剥がれ落ちる現象、フレーキングが発生します。これがボールねじの寿命です。 寿命計算には基本動定格荷重という指標が用いられ、同じ条件で運転した一群のボールねじのうち、90パーセントがフレーキングを起こさずに回転できる総回転数を算出します。この計算は軸受の寿命理論に準拠しており、荷重の3乗に反比例するという特性があります。つまり、荷重を半分にすれば寿命は8倍に延びる計算となります。

危険速度

ねじ軸は細長い棒状の物体であるため、回転数が上がると固有振動数と共振し、縄跳びのように振り回される現象、ワールディングが発生します。この限界の回転数を危険速度と呼びます。危険速度は軸径が太いほど高く、長さが長いほど低くなります。長尺のボールねじを使用する場合、この危険速度が運転可能な上限回転数を決定する支配的な要因となります。

DN値

高速性能を表す指標としてDN値が用いられます。これは軸径と回転数の積で表され、ボールが循環路内を移動する周速に関連します。近年では、エンドキャップ式の改良やボール保持器の採用により、DN値15万を超える超高速ボールねじも実用化されており、マシニングセンタの高速化に寄与しています。


製造プロセスと精度等級

ボールねじの製造方法は、大きく分けて研削仕上げと転造仕上げの二つがあり、それぞれ求められる精度等級や用途が異なります。

精密ボールねじ(研削)

工作機械や測定器に使用される高精度なボールねじは、焼入れ硬化したねじ軸を、ねじ研削盤を用いて砥石で精密に研削加工して作られます。これを研削ボールねじ、あるいは精密ボールねじと呼びます。 JIS規格ではC0からC5級に分類され、C0級では代表移動量誤差が数マイクロメートルという極めて高い精度が保証されます。製造には温度管理された恒温室が必要であり、コストは高くなりますが、サブミクロンの位置決めには不可欠です。

転造ボールねじ

搬送装置や一般産業機械に使用されるボールねじは、強い圧力をかけて材料を盛り上げる転造加工によってねじ溝を成形します。これを転造ボールねじと呼びます。 生産性が高く、材料の繊維組織が切断されないため強度が高いという利点がありますが、研削ねじに比べてリード精度は劣ります。JIS規格ではC7からC10級が一般的です。近年では転造技術の向上により、C5級に迫る精度の転造ボールねじも登場しており、コストパフォーマンスの高さから採用範囲が拡大しています。


トライボロジーと熱変位対策

ボールねじの性能を維持するためには、潤滑と熱対策が欠かせません。

潤滑の重要性

転がり接触とはいえ、ボール同士の接触や循環部品との摺動部には滑り摩擦が存在します。適切な潤滑膜が形成されないと、金属接触による摩耗や焼付きが発生し、早期に破損します。 潤滑剤にはリチウム系グリースや潤滑油が用いられます。近年では、環境負荷低減やメンテナンスフリー化の要求から、ナット内部に潤滑油を含浸させた樹脂製の給油ユニットを内蔵し、長期間にわたり微量の油を供給し続ける技術が標準化しています。

熱変位とその制御

高速駆動時には、摩擦熱によってねじ軸の温度が上昇し、熱膨張によって軸が伸びます。鋼材は1メートルの長さで温度が1度上がると約11マイクロメートル伸びるため、精密加工においては無視できない位置決め誤差となります。 これに対処するため、ねじ軸にあらかじめ引張力を加えて取り付けるプリテンション方式や、中空のねじ軸内部に冷却液を通す軸芯冷却ボールねじが開発されています。軸芯冷却は、発熱源であるナット部や軸受部を内側から直接冷却できるため、熱変位を劇的に抑制する最も効果的な手段とされています。


特殊環境対応と未来技術

通常の産業環境以外でも使用できるよう、ボールねじの技術は進化を続けています。

クリーン・真空環境

半導体製造装置などのクリーンルーム内では、グリースからの発塵が問題となります。そのため、発塵性の低い低発塵グリースや、フッ素系潤滑剤が使用されます。また、真空環境ではオイルが蒸発してしまうため、二硫化モリブデンや銀などの固体潤滑被膜をコーティングした真空用ボールねじが用いられます。

高負荷駆動への挑戦

射出成形機やプレス機の電動化に伴い、従来の油圧シリンダーに代わって数十トンから数百トンという極めて大きな推力を発生させる高負荷用ボールねじの需要が急増しています。これらには、ボール径を大きくし、負荷回路数を増やして荷重を分散させる設計や、ナット長さを延長して負荷容量を稼ぐなどの工夫が凝らされています。

コメント