機械材料

機械材料

機械材料の基礎:ダイヤモンドライクカーボン(DLC)

ダイヤモンドライクカーボン、一般にDLCと略されるこの材料は、その名の通り、ダイヤモンドに類似した優れた物理的・化学的特性を持つ、非晶質(アモルファス)の炭素薄膜の総称です。それは、純粋なダイヤモンドやグラファイトとは異なる、第三の炭素材料とも言える存在であり、極めて高い硬度と低い摩擦係数、そして優れた耐摩耗性を併せ持つことから、現代のトライボロジー(摩擦・摩耗・潤滑の科学)分野において、最も注目され、広く実用化されている表面改質技術の一つです。
機械材料

機械材料の基礎:マルエージング鋼

マルエージング鋼は、極めて高い強度と、優れた靭性(破壊に対する抵抗力)を両立させた、特殊な超高強度鋼です。その名称は、この鋼が持つ特異な強化メカニズムである「マルテンサイト組織をエージング(時効硬化)させる」ことに由来します。一般的な高強度鋼が、炭素を利用してマルテンサイト組織そのものを硬化させるのに対し、マルエージング鋼は、炭素含有量を極めて低く(通常0.03%以下)抑え、代わりにニッケルを18%程度と多量に含み、さらにコバルト、モリブデン、チタンといった合金元素を添加しています。このユニークな成分設計と、特殊な熱処理の組み合わせにより、他の鋼材では達成困難な、卓越した機械的特性が引き出されます。
機械材料

機械材料の基礎:サーメット

サーメットは、その名称が示す通り、セラミックスとメタルの二つの単語を組み合わせて作られた複合材料です。その工学的な本質は、セラミックスが持つ、極めて高い硬度、耐摩耗性、耐熱性といった長所と、金属が持つ、破壊に対する抵抗力、すなわち高い靭性という長所を、一つの材料の中に両立させることにあります。
機械材料

機械素材の基礎:ニトリルゴム NBR

ニトリルゴムは、アクリロニトリルとブタジエンの共重合によって得られる合成ゴムであり、一般にNBRという略称で広く知られています。その工学的な最大の特徴は、他の汎用ゴムが持ち得ない、極めて優れた耐油性と耐燃料性にあります。この特性により、ニトリルゴムは、自動車のエンジンルーム、油圧機器、産業機械など、鉱物油やグリース、燃料に直接触れる環境下で使用されるシール材やホースの材料として、絶対的な地位を確立しています。
機械材料

機械材料の基礎:クロロプレンゴム CR

クロロプレンゴムは、化学的にはポリクロロプレンと呼ばれ、クロロプレンというモノマーを重合させて得られる合成ゴムの一種です。その最も有名な商品名であるネオプレンとして、広く世界に知られています。1930年代に米デュポン社によって工業化された、最も歴史のある合成ゴムの一つであり、その登場は、天然ゴムに依存していた産業界に大きな変革をもたらしました。
機械材料

機械材料の基礎:チタン酸バリウム

チタン酸バリウムは、バリウム、チタン、そして酸素から構成される、化学式BaTiO₃で表される人工のセラミックス材料です。その最大の特徴は、強誘電性と呼ばれる特異な性質を持ち、それによってもたらされる極めて高い誘電率にあります。この性質により、チタン酸バリウムは、現代の電子機器に不可欠な積層セラミックコンデンサ(MLCC)の最重要材料として、エレクトロニクス産業を根底から支えています。
機械材料

機械材料の基礎:サイアロン

サイアロンは、窒化ケイ素(Si₃N₄)を母体として、その結晶構造の中に、アルミニウムと酸素を原子レベルで取り込ませた、先進的なエンジニアリングセラミックスです。その名称は、構成元素であるSi(ケイ素)、Al(アルミニウム)、O(酸素)、そしてN(窒素)の頭文字を組み合わせたもので、材料の成り立ちそのものを表しています。
機械材料

機械材料の基礎:炭化ケイ素

炭化ケイ素は、ケイ素と炭素が1対1の原子比で結合して形成される化合物で、その化学式はSiCと表記されます。天然には、隕石中にモアッサナイトとしてごく稀に存在するのみで、工業的に利用されるものは、ほぼ全てが人工的に製造されたものです。その最大の特徴は、ダイヤモンドに次ぐ極めて高い硬度と、優れた耐熱性、そして化学的安定性にあります。これらの特性から、古くは研磨材として、現代では過酷な環境下で使用される機械部品や耐熱構造材として、重要な地位を占めてきました。
機械材料

機械材料の基礎:ジルコニア

ジルコニアは、化学式ZrO₂で表されるジルコニウムの酸化物であり、極めて優れた特性を持つことから、先端産業で活躍するアドバンスドセラミックスの代表格です。一般に、セラミックスと聞くと「硬いが、もろい」というイメージがありますが、ジルコニアはこの常識を覆す、金属のような高い靭性、すなわち粘り強さを持つことから、「セラミック鋼」という異名を持っています。この驚異的な靭性は、ジルコニアがその内部に秘めた、亀裂の進展を自ら食い止めるという、巧妙で自己防御的なメカニズムに由来します。
機械材料

機械材料の基礎:アルミナ

アルミナは、アルミニウムの酸化物である酸化アルミニウム(Al₂O₃)を主成分とする、セラミックス材料の総称です。ファインセラミックスあるいはエンジニアリングセラミックスと呼ばれる、工業用に高度な機能性を持たせたセラミックスの中でも、最も代表的で、世界で最も広く利用されています。天然鉱物としてはコランダムとして存在し、そこに微量の不純物が混入することで、ルビーやサファイアといった美しい宝石となります。このことからも分かるように、アルミナの最大の特徴は、その極めて高い硬度にあります。それに加え、優れた電気絶縁性、高い耐熱性と化学的安定性を兼ね備えており、これらの特性を、比較的安価に実現できることから、「セラミックスの標準」とも言える、盤石の地位を築いています。
機械材料

機械材料の基礎:ポリアセタール

ポリアセタールは、化学名をポリオキシメチレンと言い、その英語名の頭文字をとってPOMという略称で広く知られる熱可塑性樹脂です。炭素と酸素が交互に結合した単純かつ強固な分子構造を持ち、汎用エンジニアリングプラスチックの五大樹脂の一つに数えられます。金属に匹敵する機械的強度と優れた耐疲労性を持つことから「プラスチックの金属」という異名を持ち、歯車や軸受、ねじ、バネといった機械要素部品の材料として、現代の産業界において代替の利かない地位を確立しています。自動車のドアロック機構からファスナー、ライターの着火レバー、そしてプリンターの内部ギアに至るまで、私たちの生活はポリアセタール製の部品によって支えられています。
機械材料

機械材料の基礎:無酸素銅

無酸素銅は、その名の通り、銅の中に不純物として含まれる酸素を、極限まで取り除いた高純度の銅材料です。日本産業規格ではC1020として規定されており、その純度は99.96パーセント以上に達します。この銅が、エレクトロニクスや真空技術といった最先端分野で不可欠な材料として重用される理由は、極めて高い導電性と、高温加熱時に材料を破壊する水素脆化という現象を完全に克服した、類まれな特性を両立している点にあります。
機械材料

機械材料の基礎:軸受鋼

軸受鋼は、ベアリング鋼とも呼ばれ、転がり軸受、すなわちベアリングの内輪、外輪、そして玉やころといった転動体を製造するために特別に開発された、特殊用途鋼です。ベアリングは、機械の回転部分を滑らかに支持し、摩擦を減らすという極めて重要な役割を担っています。その心臓部である転動体と軌道輪は、運転中に極小の点や線で接触しながら、非常に大きな荷重を繰り返し受け続けます。この極限的な状況下で、何億回、何十億回という回転に耐え抜くため、軸受鋼には他のいかなる鋼材にも見られない、特異で高度な特性が要求されます。
機械材料

機械材料の基礎:機械構造用炭素鋼鋼材

機械構造用炭素鋼鋼材は、その名の通り、機械を構成する歯車、軸、ボルト、クランクといった、様々な部品の材料として使用されるために設計された炭素鋼です。日本産業規格ではJIS G 4051に規定されており、その規格記号からS-C材という通称で広く呼ばれています。例えば、最も代表的なS45Cは、この鋼材ファミリーの代名詞的な存在です。
機械材料

機械材料の基礎:ばね鋼

ばね鋼は、その名の通り、ばね製品を製造するために特別に設計された鋼の総称です。ばねの最も重要な機能は、外部から力を受けて弾性的に変形することでエネルギーを吸収し、力が取り除かれると元の形状に復元してそのエネルギーを放出することにあります。この基本的な役割を果たすため、ばね鋼には他の鋼材とは一線を画す、極めて高い弾性限度が要求されます。
スポンサーリンク