機械材料

機械材料

機械材料の基礎:一般構造用圧延鋼材

一般構造用圧延鋼材は、その名の通り、建築、橋梁、船舶、産業機械といった、社会を構成する多種多様な「一般構造物」の部材として、最も広く、そして大量に使用されている基本的な鋼材です。日本産業規格ではJIS G 3101に規定されており、その規格記号からSS材という通称で呼ばれています。
機械材料

機械材料の基礎:クロムモリブデン鋼

クロムモリブデン鋼は、炭素鋼に主要な合金元素としてクロムとモリブデンを添加した、低合金鋼の一種です。一般には、その成分の頭文字をとってクロモリという愛称で広く知られています。この鋼の最大の特徴は、熱処理を施すことによって、高い強度と、破壊に対する抵抗力である靭性(粘り強さ)を、極めて高いレベルで両立できる点にあります。ただ硬いだけでなく、しなやかさも兼ね備えているため、過酷な力がかかる構造部材や機械部品に理想的な材料として、長年にわたり絶大な信頼を得ています。
機械材料

機械材料の基礎:ニッケル合金

ニッケル合金は、ニッケルを主成分として、クロム、モリブデン、鉄、銅といった様々な元素を添加することで、特定の性能を飛躍的に高めた合金の総称です。その最大の特徴は、一般的なステンレス鋼ですら耐えられないような、極めて過酷な腐食環境や超高温環境下で、驚異的な耐久性を発揮する点にあります。
機械材料

機械材料の基礎:ポリアミド(ナイロン)

ポリアミドは、その分子の主鎖にアミド結合を繰り返し持つ高分子化合物の総称です。一般には、米国デュポン社の商品名であるナイロンとして広く知られており、優れた機械的特性を持つことから、エンジニアリングプラスチックの代表格として様々な分野で活躍しています。
機械材料

機械材料の基礎:PET(ポリエチレンテレフタラート)

ポリエチレンテレフタレートは、一般にその頭文字をとってPET(ペット)と呼ばれる、熱可塑性ポリエステル樹脂の一種です。私たちの生活に最も身近なプラスチックの一つであり、飲料用のペットボトルをはじめ、衣料用のポリエステル繊維、食品包装用のフィルム、さらには工業用部品に至るまで、極めて幅広い分野で利用されています。
加工学

機械加工の基礎:鋳造

鋳造は、人類が古くから利用してきた最も基本的な金属加工法の一つです。金属を融点以上に加熱して液体状態にし、それを目的の形状を持つ空洞に流し込み、冷却・凝固させて製品を得る加工方法です。一見単純な原理ですが、その背後には材料科学、熱力学、流体力学などが複雑に絡み合う奥深い加工方法です。
機械材料

機械材料の基礎:チタン合金

チタン合金は、実用金属の中で比強度が最大という卓越した機械的性質と、白金や金に匹敵する極めて高い耐食性を併せ持つ先端構造材料です。元素記号Tiで表されるチタンは、密度が4.51グラム毎立方センチメートルと、鉄の約60パーセントという軽さでありながら、鋼と同等以上の強度を誇ります。この「軽くて強い」という特性に加え、錆びない、磁気を帯びない、生体適合性に優れるといった多岐にわたる機能性により、航空宇宙、化学プラント、医療、自動車、建築といった広範な産業分野で不可欠な素材としての地位を確立しています。
コラム

機械材料の基礎:鋳鉄

鋳鉄は、鉄を主成分とし、炭素を多く含む鉄-炭素系の合金です。炭素量がこれより少ない鉄合金である「鋼(はがね、Steel)」とは明確に区別されます。鋳鉄には炭素の他に、ケイ素が通常1~3%程度、さらにマンガン、リン、硫黄などが不純物または合金元素として含まれます。その名の通り、鋳鉄の最大の利点は「鋳造」に適していることです。鋼に比べて融点が低く(約1150℃~1250℃)、溶けた状態での流動性が良いため、複雑な形状の製品でも型に流し込むことで比較的容易に製造できます。この優れた「鋳造性」により、古くから様々な製品の製造に用いられてきました。
機械材料

機械材料の基礎:PTFE(ポリテトラフルオロエチレン)

PTFE(ポリテトラフルオロエチレン)は、分子内にフッ素原子を含む合成樹脂である「フッ素樹脂」の中で最も代表的かつ生産量が最も多いポリマーです。一般的には、開発元である米ケマーズ社(旧デュポン社)の商標「テフロン®(Teflon®)」として広く認知されています。
機械材料

機械材料の基礎:黒鉛

黒鉛は、ダイヤモンドと同じく炭素原子のみから構成される同素体の一つであり、石墨あるいはグラファイトとも呼ばれます。漆黒の光沢を持ち、金属のような導電性と熱伝導性を示しながら、同時に潤滑性や耐熱性、耐薬品性といったセラミックス的な特性も併せ持つ、極めて特異な物質です。鉛筆の芯から、リチウムイオン二次電池の負極材、製鉄用の巨大な電極、そして半導体製造装置の部材に至るまで、黒鉛は現代産業の基盤を支える不可欠なマテリアルです。その性能は、炭素原子が織りなす微細な結晶構造と、それを制御する製造プロセスによって決定づけられます。
コラム

機械材料の基礎:PLA(ポリ乳酸)

PLAすなわちポリ乳酸は、トウモロコシやサトウキビなどの植物に含まれるデンプンや糖を原料とするバイオマスプラスチックの代表格です。化学的には脂肪族ポリエステルに分類される熱可塑性樹脂であり、石油由来のプラスチックに代わる持続可能な材料として、包装資材から医療用インプラント、そして3Dプリンティング材料に至るまで、その適用範囲を急速に拡大しています。従来のプラスチックが数百年もの間環境中に残留するのに対し、PLAは一定の条件下で水と二酸化炭素にまで完全に分解される生分解性を持っています。しかし、PLAの真価は単なる環境性能にとどまりません。透明性、剛性、そして特異な熱的性質など、材料としての基礎特性においても極めて興味深い特徴を有しています。
コラム

機械材料の基礎:ABS樹脂

ABS樹脂は、アクリロニトリル(Acrylonitrile)、ブタジエン(Butadiene)、スチレン(Styrene)の三種類の化学成分を重合させて作られる、非晶性の熱可塑性樹脂(Thermoplastic)です。正式名称はアクリロニトリル・ブタジエン・スチレン共重合体となります。この三つの成分が持つそれぞれの優れた特性、すなわちアクリロニトリルの耐熱性・機械的強度・耐油性、ブタジエンゴムの耐衝撃性(特に低温での粘り強さ)、そしてスチレンの加工性・表面光沢・剛性を、バランス良く兼ね備えている点が最大の特徴です。この優れた物性バランスから、世界中で大量に生産・使用されています。
コラム

表面処理の基礎:黒染め処理

黒染め処理は、主に鉄鋼材料の表面に、化学的な方法で黒色の四三酸化鉄の皮膜を生成させる化成処理の一種です。「アルカリ黒染め」「四三酸化鉄皮膜処理」などとも呼ばれます。塗装やめっきとは異なり、素材自体を化学反応させて皮膜を形成するため、素材と皮膜の密着性が非常に高いのが特徴です。
コラム

機械材料の基礎:超硬合金

超硬合金は、主に炭化タングステンなどの硬質な金属炭化物粉末を、鉄系金属で焼き固めた焼結合金の一種です。極めて高い硬度を持つことが最大の特徴であり、金属材料の中でも特に優れた耐摩耗性、耐熱性を有しています。このため、主に切削工具や金型、耐摩耗部品など、過酷な条件下で使用される材料として、現代の製造業に不可欠な存在となっています。
既編

機械材料の基礎:高速度工具鋼(ハイス)

高速度工具鋼は、金属を削るための切削工具の材料として、現代の製造業において極めて重要な位置を占める鉄鋼材料です。一般にハイスピードスチール、あるいは単にハイスという略称で広く親しまれています。日本産業規格 JIS においては SKH という記号で分類され、ドリル、エンドミル、タップ、ホブカッター、バイトなど、多種多様な切削工具の素材として使用されています。この材料が登場する以前、金属加工には炭素工具鋼が用いられていました。しかし、炭素工具鋼は摩擦熱に弱く、切削速度を上げると刃先が焼き戻されて軟化し、すぐに切れなくなってしまうという欠点がありました。19世紀末から20世紀初頭にかけて開発された高速度工具鋼は、その名の通り、従来よりもはるかに高速での切削を可能にしました。これは、生産効率を劇的に向上させ、産業革命以降の機械文明の発展を根底から支えた歴史的な発明の一つと言えます。
スポンサーリンク