機械材料

機械材料の基礎:タングステンカーバイト

工学の世界で利用されるタングステンカーバイドとは、そのほとんどが超硬合金、英語ではサーメットと呼ばれる、複合材料の形をとります。超硬合金は、硬さの源であるタングステンカーバイドの微細な粒子を、コバルトやニッケルといった金属のバインダ、すなわち結合相で焼き固めた材料です。この複合構造こそが、タングステンカーバイドに、他の材料にはない卓越した性能をもたらす、工学的な核心です。
機械材料

機械材料の基礎:エチレンプロピレンジエンゴム(EPDM)

EPDMの特徴は、ゴム材料の宿命的な弱点であったオゾン、紫外線、そして熱に対する、極めて優れた耐久性にあります。この比類なき耐候性と耐熱性により、EPDMは「屋外での使用」や「高温環境下での使用」において、他の汎用ゴムを圧倒する信頼性を提供します。自動車のウェザーストリップから、建物の屋上防水シート、高温の蒸気を輸送するホースに至るまで、EPDMは、過酷な環境下で長期間の柔軟性とシール性を維持するという、困難な工学的課題を解決するために開発された、戦略的な材料です。
機械材料

機械材料の基礎:フッ素ゴム(FKM)

フッ素ゴムは、その分子骨格にフッ素原子を含む合成ゴムの総称であり、一般にFKMという略称で知られます。これは、デュポン社のかつての商標名であるViton®(バイトン)としても広く認知されています。フッ素ゴムは、数あるエラストマー(ゴム材料)の中で、耐熱性、耐薬品性、耐油性において、他の追随を許さない、極めて高い性能を持つ高性能特殊ゴムの頂点に君臨しています。
加工学

機械加工の基礎:ブロー成形

ブロー成形は、中空形状のプラスチック製品を製造するための、代表的な熱可塑性樹脂の加工法です。ブローとは「息を吹く」という意味であり、その名の通り、加熱して軟化させた樹脂に圧縮空気を吹き込み、風船のように膨らませて金型に押し当てることで、製品を成形します。この原理は、古くから行われているガラス吹きの技術を、プラスチックに応用したものです。飲料用ペットボトル、洗剤の容器、自動車の燃料タンク、大型の貯蔵タンクに至るまで、私たちの身の回りにある、継ぎ目のない中空のプラスチック製品のほとんどが、このブロー成形によって生み出されています。その工学的な本質は、比較的低コストな設備と金型で、複雑な中空製品を極めて高い生産性で製造できる点にあります。
機械材料

機械材料の基礎:ブタジエンゴム

ブタジエンゴムは、その化学名であるポリブタジエン、あるいは略称のBRとして広く知られる、代表的な合成ゴムの一つです。1,3-ブタジエンというモノマーを重合させて得られるこの材料は、スチレンブタジエンゴム SBRや天然ゴム NRと共に、世界のゴム産業を支える基幹的なエラストマーです。ブタジエンゴム単体では、引張強さや引裂き強さといった機械的性質が低いという弱点を持ちますが、他のゴムと混合した際に、その真価を発揮する特異な性能を持っています。その工学的な本質は、極めて高い反発弾性、卓越した耐摩耗性、そして非常に優れた低温特性という三つの比類なき長所に集約されます。
加工学

機械加工の基礎:真空成形

真空成形は、熱成形(サーモフォーミング)と呼ばれるプラスチック加工法の中で、最も基本的で、広く普及している技術の一つです。その本質は、加熱してゴム状に軟化させた熱可塑性プラスチックシートと、金型との間の空気を真空ポンプで吸引・排気し、それによって生じる圧力差を利用して、シートを金型の表面に押し付けて成形するものです。
加工学

機械加工の基礎:圧空成形

圧空成形は、熱成形(サーモフォーミング)に分類されるプラスチックの成形技術の一種です。その最も基本的なプロセスは、加熱して軟化させた熱可塑性プラスチックシートを金型に押し当て、冷却・固化させて製品形状を得るというものです。この技術の工学的な本質であり、名称の由来でもあるのが、シートを金型に押し付ける力として、真空による吸引力ではなく、圧縮空気(圧空)による積極的な加圧力を用いる点にあります。この「押す力」を利用することにより、圧空成形は、従来の真空成形では不可能であった、極めてシャープなディテールや、微細なシボ模様の再現を可能にし、射出成形に迫る外観品質と、真空成形の特長である低コスト・短納期を両立させる、先進的な製造方法です。
加工学

機械加工の基礎:バーリング加工

バーリング加工は、主に薄い金属板に下穴と呼ばれる貫通穴をあけ、その穴の縁を塑性変形によって引き延ばし、円筒状のフランジ(襟)を成形するプレス加工法の一種です。この加工は、成形される形状から穴フランジ加工、あるいは材料が引き延ばされる様子から穴広げ加工とも呼ばれます。
加工学

機械加工の基礎:サブマージアーク溶接

サブマージアーク溶接は、消耗電極式のアーク溶接法の一種であり、その名の通り、アークが完全に「サブマージ」した状態で溶接が進行することを最大の特徴とします。この「覆う」役割を担うのが、粒状のフラックスです。溶接部は、このフラックスの厚い層の下で、大気から完全に遮断されて形成されます。
加工学

機械加工の基礎:プラズマ溶接

プラズマ溶接は、プラズマアークと呼ばれる、極めて高温かつ高エネルギー密度の熱源を利用するアーク溶接法の一種です。その最も本質的な工学的特徴は、TIG溶接と同様に非消耗式のタングステン電極を用いながら、その電極から発生するアークを、水冷された銅製のノズル(コンストリクティングノズル)によって強制的に絞り込む点にあります。
スポンサーリンク