金属加工

加工学

機械加工の基礎:けがき

けがきとは、機械加工の第一工程として、工作物の表面に加工の基準となる線や点を作図する作業です。設計図面に描かれた二次元の幾何学情報を、実体である三次元の素材表面に物理的に転写するプロセスであり、これから行われる切削や研削、穴あけといった除去加工のガイドラインとなる極めて重要な工程です。建設現場における墨出しに相当しますが、機械加工におけるけがきは、ミクロン単位からミリ単位の精度が要求される点で、より緻密な寸法管理能力が求められます。NC工作機械やマシニングセンタが普及した現代においても、試作品の製作、鋳造品の加工、治具の製作、あるいは機械の修理・メンテナンスといった非量産分野において、けがきは決して省略できない基盤技術です。また、NC加工の前段階として、素材の取り代を確認したり、加工原点を設定したりするための目安としても機能します。
加工学

機械加工の基礎:やすり

やすりは、表面に無数の微小な刃を持ち、対象物を切削および研削することで寸法を調整し、表面粗さを改善するための手工具です。人類の歴史において最も古くから存在する工具の一つでありながら、現代の精密機械製造の現場においても、その最終的な仕上げや微調整において代替不可能な役割を果たしています。回転工具であるエンドミルや砥石が動力源からのエネルギーを加工点に集中させるのに対し、やすりは作業者の手による往復運動を主たるエネルギー源とします。やすりの切削メカニズムは多刃工具による剪断加工そのものであり材料力学、トライボロジー、幾何学といった高度な理学的要素が凝縮されています。
加工学

機械加工の基礎:鍛接

鍛接は、金属接合技術の中で最も古い歴史を持つ加工法の一つであり、二つの金属材料を加熱して塑性変形能を高めた状態で、ハンマーによる打撃やプレスによる加圧を行うことにより、原子レベルでの結合を得る固相接合技術です。現代の産業界で主流となっているアーク溶接やレーザー溶接が、母材を局所的に融点以上に加熱して液相状態で融合させる融接であるのに対し、鍛接は母材を溶融させずに固体のまま接合するという点で異なります。この技術は、古代の製鉄技術の誕生と共に始まり、日本刀の作刀プロセスやダマスカス鋼の製造、そして産業革命期のチェーンやパイプの製造に至るまで、金属加工の根幹を支えてきました。
加工機械

機械加工の基礎:押出加工

押出加工は、ビレットと呼ばれる金属塊をコンテナという強固な容器に装填し、その一端に設けられたダイスと呼ばれる金型の穴に向かって、ラムと呼ばれるピストンで高圧力を加えて押し出すことで、ダイスの穴形状と同一の断面を持つ長い製品を成形する塑性加工法です。英語ではエクストルージョンと呼ばれます。身近な例で言えば、歯磨き粉のチューブを絞り出す現象と原理は同じですが、工学的な視点で見ると、そこには金属材料の塑性流動、高圧力下での摩擦挙動、熱力学的な相変態、そして工具材料の強度設計といった、極めて高度な物理現象が凝縮されています。この技術により、アルミニウムサッシのような複雑な断面を持つ建材から、鉄道車両の構体、航空機の構造部材、そして自動車部品に至るまで、継ぎ目のない長尺かつ高精度な部材が大量に生産されています。
加工学

機械加工:絞り加工

絞り加工は、一枚の平らな金属板であるブランクに対し、パンチとダイと呼ばれる金型を用いて圧力を加え、継ぎ目のない底付きの容器状、すなわちカップ状に成形する塑性加工法です。英語ではディープドローイングと呼ばれます。この加工法は、アルミニウム製の飲料缶から自動車のボディパネル、ステンレス製の台所シンク、さらにはリチウムイオン電池のケースに至るまで、現代の工業製品の製造において極めて広範囲に利用されています。その工学的な本質は、金属材料が持つ展延性を利用し、材料を破断させることなく流動させ、二次元の平面を三次元の立体へと幾何学的に変換するプロセスにあります。
加工学

機械加工の基礎:砂型鋳造

砂型鋳造は、耐火性を持つ砂を主原料として作製された鋳型に、融点以上の温度で溶解した金属を注入し、冷却凝固させることで所定の形状を持つ金属製品を得る加工技術です。この手法は、人類が金属加工を開始した初期から存在する極めて原始的な技術であると同時に、現代の素形材産業において最も生産量が多く、かつ技術的な奥深さを持つ基幹技術でもあります。その工学的な本質は、成形の自由度が極めて高い砂という流動性のある粒子を、粘結剤の作用によって一時的に固形化し、高温の溶融金属を受け止める容器として機能させ、金属が凝固した後には再び砂粒子へと解体できるという、可逆的なプロセスにあります。この消耗型鋳型という特性により、砂型鋳造は、数グラムの精密部品から数百トンに及ぶ巨大な構造物まで、さらには一点ものの試作品から大量生産品まで、あらゆるサイズと生産数量に対応可能な、圧倒的な汎用性を有しています。
加工学

機械加工の基礎:ロストワックス鋳造

ロストワックス鋳造は、ろう、すなわちワックスで作られた模型の周囲を耐火物で覆い固め、加熱によって中のワックスを溶かし出すことで空洞を作り、そこに溶融金属を流し込んで鋳物を製造する精密鋳造法です。工業的にはインベストメント鋳造とも呼ばれます。インベストメントとは包む、覆うという意味を持ち、模型をセラミックスなどの耐火物で包み込む工程に由来します。この技術の工学的な最大の特徴は、鋳型に合わせ目、すなわちパーティングラインが存在しないことです。一般的な砂型鋳造や金型鋳造では、模型を取り出すために鋳型を二つ以上に分割する必要がありますが、ロストワックス法では模型そのものを溶かして消失させるため、分割面が不要となります。これにより、他の鋳造法では不可能な複雑なアンダーカット形状や、中空構造を持つ部品を、極めて高い寸法精度と美しい鋳肌で一体成形することが可能となります。
加工学

機械加工の基礎:ウォータジェット加工

ウォータジェット加工は、数百メガパスカルという超高圧に加圧された水を、直径数分の1ミリメートルという極めて微細なノズルから噴射し、その超高速の水流が持つ強大な運動エネルギーを利用して物体を切断あるいは穿孔する除去加工技術です。この技術の工学的本質は、流体力学におけるベルヌーイの定理を極限まで応用し、液体の圧力エネルギーを音速の数倍に達する速度エネルギーへと変換することにあります。熱的な作用を伴わずにあらゆる材料を切断できるという特性から、金属、セラミックス、複合材料、さらには食品に至るまで、現代の産業界において代替不可能な役割を担う特殊加工技術として位置づけられています。
加工学

機械加工の基礎:鋸切断加工

鋸切断加工は、複数の切れ刃を持つ工具である鋸刃を用いて、金属材料を物理的に削り取りながら切断する、除去加工の一種です。ものづくりの工程において、素材である丸棒や角材、パイプなどを必要な長さに切り出す「材料取り」あるいは「ブランク加工」と呼ばれる最初の工程を担う、極めて重要な基礎技術です。一般的に切断というと、単に物を分離する単純作業と思われがちですが、工学的な視点で見ると、それは旋削やフライス削りと全く同じ切削理論に基づく高度な機械加工プロセスです。特に、鋸切断は、他の切断方法と比較して、切り代と呼ばれる材料のロスが極めて少なく、かつ熱による変質が少ないという優れた特徴を持っています。
表面処理

表面処理の基礎:バレル研磨

バレル研磨は、工作物、研磨石すなわちメディア、水、およびコンパウンドと呼ばれる化学助剤を槽すなわちバレルの中に投入し、その槽に回転や振動などの運動を与えることで内部のマス(混合物)に相対運動を生じさせ、その際に発生する摩擦力や衝突エネルギーを利用して工作物の表面を仕上げる加工法です。この技術は、機械加工の歴史の中で最も古くから存在する表面処理法の一つですが、同時に現代の大量生産システムにおいて不可欠な大量研磨技術として、その地位を確立しています。バリ取り、スケール除去、コーナーのR付け、表面粗さの改善、光沢仕上げなど、その目的は多岐にわたります。
加工学

機械加工の基礎:研削加工

研削加工は、高速で回転する研削砥石を工作物に押し当て、その表面を微小な切りくずとして削り取ることで、所定の形状、寸法、そして表面粗さに仕上げる除去加工法です。機械加工の分類においては、旋削やフライス削りと同じく切削加工の一種に属しますが、その物理的なメカニズムや適用領域は、一般的な刃物による加工とは大きく異なります。
加工学

機械加工の基礎:センタレス研削

センタレス研削は、円筒研削の一種でありながら、工作物を支持するための「センタ穴」や「チャック」を一切必要としない、極めてユニークかつ高能率な精密加工法です。心なし研削とも呼ばれます。一般的な円筒研削が、工作物の中心を機械的に拘束して回転させるのに対し、センタレス研削は、工作物の外周面そのものを基準として位置決めし、自律的に真円度を高めていくという、創成加工に近い性質を持っています。この特徴により、細長いピンや小さなローラー、あるいは脆いセラミックス材料など、従来の研削法では固定が困難な部品であっても、サブミクロンオーダーの寸法精度と真円度で、驚異的な速度で大量生産することを可能にしています。
加工学

加工機械の基礎:フォーミングマシン

この機械の工学的な最大の特徴は、対象物を中心に置き、周囲360度のあらゆる方向から複数の工具(スライド)を接近させ、順次あるいは同時に加工を加えるという、多軸協調制御による成形プロセスにあります。一方向からの加圧を基本とするプレス加工とは異なり、複雑な曲げ形状や巻き形状を、専用の金型(ダイセット)を組むことなく、標準的な工具の組み合わせと運動制御によって実現できる点が、フォーミングマシンの技術的な優位性です。
加工学

機械加工の基礎:ヘラ絞り(スピニング加工)

ヘラ絞りは、回転させた円盤状の金属板に、ヘラやローラーといった工具を押し当て、塑性変形させることで、継ぎ目のない中空の回転体形状を成形する金属加工法です。英語ではメタルスピニングと呼ばれます。この技術の工学的な本質は、プレス加工のように金型全体で一度に成形するのではなく、工具と素材の接触点という極めて局所的な領域に圧力を集中させ、その接触点を連続的に移動させることで、漸進的に全体を成形する点にあります。この点接触による逐次成形というプロセスこそが、ヘラ絞りが他の塑性加工法と一線を画す最大の特徴であり、小さな力で大きな変形を実現できる理由です。
加工学

加工機械の基礎:ターニングセンタ

ターニングセンタは、工作物が回転し工具が固定されるという旋盤の基本構造を母体としつつ、そこに回転工具によるミーリング機能や高度な軸制御機能を統合した工作機械です。数値制御旋盤、すなわちNC旋盤の進化形として位置づけられますが、単なる旋盤の枠を超え、複合的な加工を一台で完結させる工程集約型の生産設備として、現代の製造業において中核的な役割を担っています。その工学的な本質は、旋削という連続切削プロセスと、ミーリングという断続切削プロセスを、同一の座標系と剛性構造の中で融合させた点にあります。これにより、円筒形状の部品に対し、キー溝加工、偏心穴あけ、平面削りといった、従来であればマシニングセンタやフライス盤といった別の機械に移し替えて行わなければならなかった工程を、ワンチャッキング、つまり一度の素材固定で完了させることが可能となりました。
スポンサーリンク