金属材料

機械材料

機械材料の基礎:CV黒鉛鋳鉄

CV黒鉛鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の一種であり、その組織中に含まれる黒鉛の形状が、片状黒鉛と球状黒鉛の中間的な形態であるバーミキュラ状すなわち芋虫状を呈していることを最大の特徴とします。英語ではCompacted Vermicular Graphite Cast Iron、あるいは単にCGIと呼ばれます。
機械材料

機械材料の基礎:可鍛鋳鉄

可鍛鋳鉄は、その名称にある可鍛、すなわち鍛造ができるかのような粘り強さを持つ鋳鉄という意味を持つ鉄系材料です。一般に鋳鉄と言えば、硬いが衝撃に弱く、叩くと割れてしまう脆い材料というイメージがあります。しかし可鍛鋳鉄は、鋳造によって成形された後、長時間の熱処理を施すことによって、その金属組織を根本から改質し、鋼に近い靭性と延性を付与された特殊な鋳鉄です。
機械材料

機械材料の基礎:白鋳鉄

白鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の一種であり、その破断面が金属光沢を持つ白色を呈することからその名が付けられました。工学的な定義としては、凝固過程において炭素が黒鉛として晶出せず、その大部分が鉄と化合してセメンタイトという極めて硬い炭化物を形成した鋳鉄を指します。一般的なねずみ鋳鉄やダクタイル鋳鉄が、組織内に黒鉛を分散させることで被削性や靭性を確保しているのに対し、白鋳鉄は黒鉛を排除し、炭化物の硬さを全面的に利用するという、対極の設計思想に基づいた材料です。その結果、白鋳鉄は金属材料の中で最高レベルの硬度と耐摩耗性を誇りますが、同時に極めて脆く、切削加工が困難であるという特性を持ちます。
機械材料

機械材料の基礎:ダクタイル鋳鉄

ダクタイル鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の一種であり、その組織中に含まれる黒鉛が球状化していることを最大の特徴とします。別名を球状黒鉛鋳鉄とも呼び、日本産業規格であるJISにおいてはFCD材として規定されています。ねずみ鋳鉄が、その組織内の片状黒鉛によって「もろさ」という宿命的な弱点を抱えていたのに対し、ダクタイル鋳鉄は、黒鉛を球状に変化させることによって、鋳鉄の持つ優れた鋳造性と、鋼が持つ強靭さを高い次元で両立させることに成功した、金属材料の歴史における革命的な発明です。
機械材料

機械材料の基礎:ねずみ鋳鉄

ねずみ鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の中で、破断面がねずみ色を呈することからその名が付けられた、最も歴史が古く、かつ現在でも産業界で最も広く利用されている金属材料の一つです。日本産業規格 JIS においては FC材として分類され、その生産量は全鋳物生産量の大半を占めています。最大の特徴は、凝固の過程で晶出する黒鉛が、薄片状あるいは片状という特異な形態をとって金属組織内に分散している点にあります。この片状黒鉛の存在こそが、ねずみ鋳鉄に優れた鋳造性、被削性、振動減衰能、そして耐摩耗性を与える一方で、強度や延性を制限する要因ともなっています。言い換えれば、ねずみ鋳鉄の工学とは、この片状黒鉛という介在物をいかに制御し、その長所を最大化しつつ短所を補うかという技術の体系であると言えます。
機械要素

機械要素の基礎:型鋼

形鋼は、建設、土木、造船、機械製造といった多岐にわたる産業分野において、構造物の骨格を形成する最も基本的かつ重要な鉄鋼材料です。その定義は、棒状の圧延鋼材のうち、その断面が円形や正方形といった単純な形状ではなく、H型、L型、溝型といった特定の断面形状を持つものを指します。形鋼の最大の特徴は、限られた断面積、すなわち限られた重量の材料を用いて、曲げモーメントや座屈荷重に対する抵抗力である断面二次モーメントや断面係数を極大化させる、断面効率の追求にあります。中実の四角い棒を梁として使うよりも、H形鋼を用いたほうが、同じ重量であれば遥かに高い剛性と強度を得ることができます。これは、材料力学における、曲げ応力は中立軸から離れるほど大きくなるという原理に基づき、材料を中立軸から遠い位置に効率的に配置しているためです。
機械材料

機械材料の基礎:熱間圧延鋼板SPHC

SPHCは、日本産業規格 JIS G 3131 に規定される「熱間圧延軟鋼板及び鋼帯」の記号であり、Steel Plate Hot Commercialの略称です。これは炭素鋼の一種であり、常温ではなく金属の再結晶温度以上の高温域で圧延加工を施された鋼板を指します。現代の産業界において、SPHCは自動車、電機、建築、土木といった広範な分野で基礎資材として利用されており、その生産量と消費量は鉄鋼材料の中でも最大級の規模を誇ります。
機械材料

機械材料の基礎:高張力鋼板(ハイテン)

高張力鋼板、一般にハイテンとも呼ばれるこの材料は、一般的な軟鋼に比べて、降伏点や引張強さといった強度を大幅に高めた鋼板の総称です。その工学的な本質は、軽量化と安全性という、特に自動車産業において二律背反する要求を、高いレベルで両立させることにあります。同じ強度を維持する前提であれば、軟鋼よりも薄い鋼板を使用できるため、製品全体の軽量化が可能となります。逆に、同じ板厚であれば、遥かに高い強度が得られるため、部材の耐久性や衝突時の安全性を飛躍的に向上させることができます。
加工学

機械加工の基礎:焼き戻し

焼き戻しは、焼き入れによって硬化させた鋼を、その変態点以下の適切な温度で再加熱し、冷却する熱処理操作です。英語ではTemperingと呼ばれます。この技術の工学的な本質は、焼き入れによって得られた、極めて硬いが同時にもろい「マルテンサイト」という不安定な組織を、熱エネルギーによって、より安定で、破壊に対する抵抗力が高い「靭性(ねばり強さ)」を持つ組織へと意図的に変化させることにあります。
加工学

機械加工の基礎:焼き入れ

焼き入れは、鉄鋼材料、特に鋼の硬度と強度を飛躍的に高めるために行われる、最も基本的かつ重要な熱処理技術です。その本質は、鋼を高温に加熱して特定の組織状態にした後、水や油などで急速に冷却することにより、鋼の内部にマルテンサイトと呼ばれる、極めて硬く、不安定な組織を意図的に生成させることにあります。このプロセスは、鋼の特性を根本から変える強力な手段であり、工具、刃物、歯車、軸受といった、高い耐摩耗性や強度が求められる、あらゆる機械部品の製造に不可欠です。しかし、焼き入れされたままの鋼は、硬さと引き換えに「もろさ」を抱えており、その真価を発揮するためには、必ず後続の「焼き戻し」という処理が必要となります。
機械材料

機械材料の基礎:クラッド鋼

クラッド鋼は、二種類以上の異なる金属材料を、その表面で強固に冶金的に接合させ、一体化した複合鋼板です。その名称は「覆われた」という意味の"clad"に由来します。この材料の工学的な本質は、単一の金属では両立が難しい複数の特性を、適材適所の原理で組み合わせることによって実現する点にあります。最も一般的な構成は、安価で高い構造強度を持つ母材(ベースメタル)としての炭素鋼や低合金鋼の片面または両面に、耐食性、耐熱性、耐摩高性といった特殊な機能を持つ、高価な合わせ材(クラッドメタル)としてのステンレス鋼、ニッケル合金、チタン、銅合金などを、薄い層として張り合わせたものです。
機械材料

機械材料の基礎:マルエージング鋼

マルエージング鋼は、極めて高い強度と、優れた靭性(破壊に対する抵抗力)を両立させた、特殊な超高強度鋼です。その名称は、この鋼が持つ特異な強化メカニズムである「マルテンサイト組織をエージング(時効硬化)させる」ことに由来します。一般的な高強度鋼が、炭素を利用してマルテンサイト組織そのものを硬化させるのに対し、マルエージング鋼は、炭素含有量を極めて低く(通常0.03%以下)抑え、代わりにニッケルを18%程度と多量に含み、さらにコバルト、モリブデン、チタンといった合金元素を添加しています。このユニークな成分設計と、特殊な熱処理の組み合わせにより、他の鋼材では達成困難な、卓越した機械的特性が引き出されます。
加工学

機械加工の基礎:加工硬化

加工硬化は、金属材料に、その弾性限度を超える力を加えて塑性変形させた際に、その金属が硬く、そして強くなる現象です。ひずみ硬化とも呼ばれます。身近な例では、針金を繰り返し曲げると、曲げた部分が次第に硬くなり、さらに曲げるのに大きな力が必要になる現象が加工硬化です。この現象は、金属を意図的に強化するための有効な手段として利用される一方で、プレス加工や引き抜き加工といった塑性加工の際には、加工を困難にする要因ともなります。
表面処理

表面処理の基礎:窒化処理

窒化処理は、鋼の表面に窒素を浸透、拡散させることで、極めて硬い窒化層を形成し、部品の表面特性を飛躍的に向上させる表面硬化熱処理の一種です。その最大の目的は、部品の耐摩耗性、耐疲労性、そして耐食性を高めることにあります。焼入れを伴う他の多くの表面硬化法とは一線を画す、窒化処理ならではの最大の特徴は、比較的低い温度で処理を行い、急冷を必要としない無変態硬化処理である点です。これにより、熱処理による部品の寸法変化や変形が極めて少ないという、絶大な工学的利点がもたらされます。
機械材料

機械材料の基礎:軸受鋼

軸受鋼は、ベアリング鋼とも呼ばれ、転がり軸受、すなわちベアリングの内輪、外輪、そして玉やころといった転動体を製造するために特別に開発された、特殊用途鋼です。ベアリングは、機械の回転部分を滑らかに支持し、摩擦を減らすという極めて重要な役割を担っています。その心臓部である転動体と軌道輪は、運転中に極小の点や線で接触しながら、非常に大きな荷重を繰り返し受け続けます。この極限的な状況下で、何億回、何十億回という回転に耐え抜くため、軸受鋼には他のいかなる鋼材にも見られない、特異で高度な特性が要求されます。
スポンサーリンク