鋳鉄

機械材料

機械材料の基礎:合金鋳鉄

合金鋳鉄は、鉄と炭素、そしてケイ素を基本成分とする通常の鋳鉄に対し、特定の機械的性質や物理的、化学的性質を飛躍的に向上させる目的で、ニッケル、クロム、モリブデン、銅、バナジウムといった合金元素を意図的に添加した高機能鋳鉄材料の総称です。一般的なねずみ鋳鉄やダクタイル鋳鉄が、炭素の含有量や黒鉛の形状制御によって特性を引き出す材料であるのに対し、合金鋳鉄は、添加元素がマトリックス組織や炭化物の形態に及ぼす冶金学的な作用を駆使して、耐摩耗性、耐熱性、耐食性、あるいは非磁性といった、通常の鉄-炭素系合金では到達不可能な領域の性能を実現します。
機械材料

機械材料の基礎:CV黒鉛鋳鉄

CV黒鉛鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の一種であり、その組織中に含まれる黒鉛の形状が、片状黒鉛と球状黒鉛の中間的な形態であるバーミキュラ状すなわち芋虫状を呈していることを最大の特徴とします。英語ではCompacted Vermicular Graphite Cast Iron、あるいは単にCGIと呼ばれます。
機械材料

機械材料の基礎:可鍛鋳鉄

可鍛鋳鉄は、その名称にある可鍛、すなわち鍛造ができるかのような粘り強さを持つ鋳鉄という意味を持つ鉄系材料です。一般に鋳鉄と言えば、硬いが衝撃に弱く、叩くと割れてしまう脆い材料というイメージがあります。しかし可鍛鋳鉄は、鋳造によって成形された後、長時間の熱処理を施すことによって、その金属組織を根本から改質し、鋼に近い靭性と延性を付与された特殊な鋳鉄です。
機械材料

機械材料の基礎:白鋳鉄

白鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の一種であり、その破断面が金属光沢を持つ白色を呈することからその名が付けられました。工学的な定義としては、凝固過程において炭素が黒鉛として晶出せず、その大部分が鉄と化合してセメンタイトという極めて硬い炭化物を形成した鋳鉄を指します。一般的なねずみ鋳鉄やダクタイル鋳鉄が、組織内に黒鉛を分散させることで被削性や靭性を確保しているのに対し、白鋳鉄は黒鉛を排除し、炭化物の硬さを全面的に利用するという、対極の設計思想に基づいた材料です。その結果、白鋳鉄は金属材料の中で最高レベルの硬度と耐摩耗性を誇りますが、同時に極めて脆く、切削加工が困難であるという特性を持ちます。
機械材料

機械材料の基礎:ダクタイル鋳鉄

ダクタイル鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の一種であり、その組織中に含まれる黒鉛が球状化していることを最大の特徴とします。別名を球状黒鉛鋳鉄とも呼び、日本産業規格であるJISにおいてはFCD材として規定されています。ねずみ鋳鉄が、その組織内の片状黒鉛によって「もろさ」という宿命的な弱点を抱えていたのに対し、ダクタイル鋳鉄は、黒鉛を球状に変化させることによって、鋳鉄の持つ優れた鋳造性と、鋼が持つ強靭さを高い次元で両立させることに成功した、金属材料の歴史における革命的な発明です。
機械材料

機械材料の基礎:ねずみ鋳鉄

ねずみ鋳鉄は、鉄と炭素を主成分とする鋳鉄材料の中で、破断面がねずみ色を呈することからその名が付けられた、最も歴史が古く、かつ現在でも産業界で最も広く利用されている金属材料の一つです。日本産業規格 JIS においては FC材として分類され、その生産量は全鋳物生産量の大半を占めています。最大の特徴は、凝固の過程で晶出する黒鉛が、薄片状あるいは片状という特異な形態をとって金属組織内に分散している点にあります。この片状黒鉛の存在こそが、ねずみ鋳鉄に優れた鋳造性、被削性、振動減衰能、そして耐摩耗性を与える一方で、強度や延性を制限する要因ともなっています。言い換えれば、ねずみ鋳鉄の工学とは、この片状黒鉛という介在物をいかに制御し、その長所を最大化しつつ短所を補うかという技術の体系であると言えます。
コラム

機械材料の基礎:鋳鉄

鋳鉄は、鉄を主成分とし、炭素を多く含む鉄-炭素系の合金です。炭素量がこれより少ない鉄合金である「鋼(はがね、Steel)」とは明確に区別されます。鋳鉄には炭素の他に、ケイ素が通常1~3%程度、さらにマンガン、リン、硫黄などが不純物または合金元素として含まれます。その名の通り、鋳鉄の最大の利点は「鋳造」に適していることです。鋼に比べて融点が低く(約1150℃~1250℃)、溶けた状態での流動性が良いため、複雑な形状の製品でも型に流し込むことで比較的容易に製造できます。この優れた「鋳造性」により、古くから様々な製品の製造に用いられてきました。
スポンサーリンク